

International Journal of Advanced Biotechnology and Research (IJABR)
ISSN 0976-2612, Online ISSN 2278–599X,
Vol-14, Issue3, 2023, pp11-15
www.bipublication.com

Research Article

Studying of antimicrobial active cities of resins and ether parts of resins of Ferula tadshikorum

Dildora Barakaeva^{1*}, Farkhod Eshboev², Nuriddin Mukarramov², Salima Aripova², Damir Mansurov² and Shakhnoz Azimova²

¹Tashkent state Agrarian University; ²S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, 77, Mirzo Ulugbek Str., 100170, Tashkent, Uzbekistan; *Correspondence: barakayevadildora0@gmail.com

[Received 19 June-2023, Accepted 22 July-2023, Published 26 July-2023]

Abstract

In this study, antimicrobial activities of resins and ether parts of resins of *Ferula tadshikorum* were investigated. Ether parts of resin showed potential antimicrobial activities $(13,5\pm0.15 \text{ mm} - 16.21\pm0.12 \text{ mm})$. Therefore, the chemical contents of volatile parts of resin were determined by the GC-MS method in order to identify the major compounds responsible for the observed antimicrobial activity (Table 2). The chemical composition of the volatile fraction of *F. tadshikorum* ether has been studied in several research papers. The composition of the volatile fraction can vary depending on factors such as the geographic location and harvesting time of the plant, as well as the extraction method used.

Keywords: Ferula tadshikorum, antimicrobial activity, GC-MS method, resin, ether.

Introduction.

The genus Ferula is the third largest and well-known genus of the family Apiaceae - celery. Currently, about 180 species of Ferula are known. The genus is distributed mainly throughout Central and Southwest Asia (especially in Iran and Afghanistan), the Far East, Northern India and the Mediterranean. The genus Ferula is characterized by the presence of oil resins (asafoetida, sagapenum, galbanum) and their use in folk and traditional pharmaceuticals [1]. Ferula is a Latin word meaning "vehicle" or "carrier". The main phytochemicals present in plants of the genus

are Ferula coumarins, coumarin esters, sesquiterpene sesquiterpenes, lactones, monoterpenes, monoterpene coumarins, prenylated coumarins, sulfur-containing phytoestrogens, flavonoids, compounds, carbohydrates and other compounds [2]. This genus is distinguished by the content of valuable groups of chemical compounds in medicinal plant species, namely, the content of odorous volatile components as essential oils, which cause their widespread use for various biological and pharmacological purposes. Numerous biological activity of chemical components of essential oils obtained from various varieties of plant species of the genus *Ferula* is known. Since this genus includes many bioactive substances that exhibit antimicrobial, insecticidal, antioxidant, cytotoxic and other types of activity, scientists are currently focusing their research on plants of this genus.

Species of the genus Ferula have been used in folk and traditional medicine for more than 1000 years. The genus Ferula is characterized by oleo-gum resin, their essential oils, which include a large number of valuable natural compounds, can be considered as liquids that are lighter than water and have remarkable hydrophobic characteristics [3]. Essential oil obtained from species of the genus Ferula exhibits various types of biological activity such as antimicrobial, antioxidant, anti-inflammatory and etc. [4,5]. These properties are related and conditioned by the chemical group of substances present in essential oils, and the activity can also be associated with one compound or a group of chemical compounds similar in structure contained in essential oil. Therefore, the aim of the study was the study of antimicrobial activities of resins and ether parts of resins of Ferula tadshikorum.

Material methods. Antimicrobial activities

The ethers and resins of Ferula tadshikorum were tested for antimicrobial activity by the agar disk-diffusion method [6]. The antimicrobial activity was evaluated using the following five microorganism: Gram-negative Escherichia coli and Pseudomonas aeruginosa; Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus; the yeast Candida albicans. Sterile nutrient agar (28 g agar/l distilled water) was inoculated with bacterial cells (200 µl of bacterial cells in 2 ml 0.9% NaCl suspension and 25 ml medium) and poured into Petri dishes to give a solid medium. Candida albicans (1×106 colony forming units per ml) was inoculated into sterile Mueller-Hinton-agar. The 2 mg/per disk of samples were applied on sterile disks. paper Ampicillin/Sulbactam (10 µg+10 µg disc), gentamicin (10 µg/disk), and fluconazole (25 μg/disk) were used as positive controls and the solvents as negative controls.

The solvents were allowed to evaporate in a stream of air. The disks were deposited on the surface of inoculated agar plates. Plates were kept for 2 h in the refrigerator to enable the diffusion of the substances into the agar. Plates with bacteria were incubated for 24 h at 37°C and plates with *Candida albicans* for 48 h at 28 °C. The inhibition zone diameter was measured and recorded after the incubation time. An average zone of inhibition was calculated for the three replicates in independent assays.

Determination of chemical content of volatile ether fraction of *Ferula tadshikorum*

In this research work, the chemical composition of the volatile resin fraction of *Ferula tadshikorum* roots was studied using the GC-MS method on the MSD/7890A GC System Agilent Technologies USA LTD chromatography-mass spectrometer. It is established that the main chemical components of this sample are 12 substances. The detected substances were identified by comparison with data from the Wiley Mass Spectrum Library (Wiley W9N11.L and NIST version 2.0) (Table 1.).

Statistical analysis

Statistical analysis and exponential curve fitting were performed using Origin 8.6 software (Microcal Software Inc., Northampton, MA). Results were expressed as mean \pm SE. To determine the statistical significance of the results One-Way ANOVA was per-formed.

Results and discussion

The essential oil of F. tadshikorum is obtained by steam distillation of the plant's dried roots. The oil is rich in terpenes, including α -pinene, β -pinene, limonene, and β -phellandrene. It also contains sesquiterpenes, such as β -caryophyllene and germacrene D. The essential oil of F. tadshikorum has been shown to possess antimicrobial, antifungal, antioxidant, and anti-inflammatory properties. The resin of F. tadshikorum is obtained by making incisions in the plant's stem and collecting the exudate. The resin contains a mixture of compounds,

including polysaccharides, coumarins, and sesquiterpene lactones. The resin has been shown to possess antimicrobial, antifungal, and antioxidant properties [7].

Some studies have suggested that the essential oil and resin of F. tadshikorum may have potential therapeutic applications in the treatment of various health conditions, such as fungal infections, inflammation, and oxidative stress [8]. However, further research is needed to fully understand the potential health benefits of these compounds. Therefore, the antimicrobial activities of ethers and resins of this plant were carried out. It is interesting to note that, only the ethers of F. tadshikorum exhibited antimicrobial activities against the tested microorganisms,

while the resin did not show any activity. The ethers showed significant activity (13,5±0.15 mm - 16.21±0.12 mm) against all tested microorganisms except for Pseudomonas aeruginosa, which was less susceptible to the compounds. The results suggest that the ethers of F. tadshikorum may have potential as antimicrobial agents, although further studies are needed to determine their chemical content, mechanism of action and potential therapeutic applications. It is also important to note that the results of this study may not necessarily apply to other varieties or sources of F. tadshikorum, as the chemical composition of the plant can vary depending on factors such as geographic location, climate, and harvesting methods.

Table 1. Antimicrobial activities of ethers and resins of *F. tadshikorum*

№		Inhibition zone (mm, ±SE, p≤0.05)					
	Samples	Gramm-positive bacteria		Gramm-positive bacteria		Fungus	
	Samples	B. subtilis	S. aureus	E. coli	P.aeruginosa	<i>C</i> .	
						albicans	
1	Danak resin	N/A	N/A	N/A	N/A	N/A	
2	Xolva resin	N/A	N/A	N/A	N/A	N/A	
3	Shira resin	N/A	N/A	N/A	N/A	N/A	
4	Ether part of resin	13,5±0.15	16.21±0.12	15.25±0.11	8.5±0.1	16.0±0.14	
	Ampicillin/Sulbactam (10 μg+10 μg disc)	35.5±	35.25±0.14	-	-		
	Gentamicin (10 µg/disc)	-	-	18.5±0.5	25.3±0.12		
	Fluconazole (25 µg/disc)	-	-	-	-	30.3±0.5	

In the study, the chemical composition of the ether fractions was analyzed using GC-MS in order to identify the major compounds responsible for the observed antimicrobial activity (Table 2). The chemical composition of the volatile fraction of *F. tadshikorum* ether has been studied in several research papers. The composition of the volatile fraction can vary depending on factors such as the geographic location and harvesting time of the plant, as well as the extraction method used.

Table 2. The chemical composition of the volatile fraction of *F. tadshikorum* ether part of resin determined by the GC-MS method

№	RT	Area%	Library/ID	CAS # №	Quality
1.	7.050	2.20	Propane, 1-[(methylethyl)thio]2-(Isopropyldisulfanyl)	005008-73-1	32
			butane	067421-86-7	25
			Propyl n-butyl disulfide	072437-64-0	22
	7.943	15.13	1,2-Dithiolane	000557-22-2	43
			[1,3]Dihian-2-one	035345-24-5	16
			Thiirane, methyl-	001072-43-1	12
3.	8.460	27.32	1,2-Dithiolane	000557-22-2	43
			[1,3]Dihian-2-one	035345-24-5	38
			1,3-Dithiolane	004829-04-3	35

4.	17.963	2.88	Thiazole, tetrahydro-	000504-78-9	53
			Methanethioamide,	000758-16-7	50
			N,N-dimethyl-Thiopropionamide	000631-58-3	50
5.	18.526	0.59	Silane, [(methylsilyl) methyl] (silylmethyl)-	005695-49-8	58
			Propane, 2-methyl-1-(propylthio)-ether, bis [2-	001741-84-0	50
			(ethylthio)ethyl]	005648-30-6	39
6.	18.991	27.28	Methyl-d3 2-methyl-2-propenyl Ether	998005-37-5	78
			Methyl 1-methyl-d3-2-propenyl Ether	998005-38-1	
			Thiazolidine Tetrahydrothiazole 1-Thia-3-	000504-78-9	59
			azacyclopentane		
					59
7.	19.392	20.33	Methyl 2-(methlthio) butyrate Carbonodithioic acid,	051534-66-8	50
			S,S-diethyl ester	000623-80-3	50
			Thiopropionamide	000631-58-3	
					47
8.	28.461	0.63	1-Tripropylsilyloxycyclopentane	1000279-13-2	50
			Germacyclopent-3-ene, 1,1,3,4-tetramethyl-d-ribo-	005764-66-9	40
			hexos-3-ulose	002092-61-7	39
9.	40.519	0.29	n-Hexadecanoic acid	000057-10-3	46
			Pentafluoropropionic acid, tetradecyl ester	006222-06-6	38
			5-octadecane (E)	007206-21-5	
					30
10.	44.911	0.31	2-octylcyclopropene-1-heptanol 9-Eicosyne	054467-85-5	30
			9,12-Tetradecadien-1-ol, acetate, (Z,E)	071899-38-2	30
				031654-77-0	30
11.	45.021	0.86	Cyclododecane	000294-62-2	87
			1-Dodecane alpha –Dodecane	000112-41-4	83
			n-Dodec-1-ene, Dodec-1-ene		
12.	46.257	2.18	9,12-Octadecadienoic acid (Z,Z)- cis-9, cis-12-	000060-33-3	96
			Octadecadienoic acid, 1-pentadecyne, 2-hydroxy-1-	000765-13-9	91
			(hydroxymethyl) ethyl ester	003443-82-1	91

The relative amounts of these compounds can vary depending on the specific sample of *F. tadshikorum* ether analyzed. It is important to note that the volatile fraction of the ether is complex and contains many other compounds in addition to those listed above.

Conclusion:

In conclusion, it was found that resins isolated from *F. tadshikorum* plant do not have antimicrobial activity. However, it was found that the volatile substances contained in the resins have high antimicrobial activity. Therefore, the ether part of resins isolated from *F. tadshikorum* plant can be used as potential antimicrobial substances.

Acknowledgement: None stated

Conflicts of interest: Authors declared No conflict of interest.

References

- Amalraj, A., and Gopi, S. (2017). Biological activities and medicinal properties of Asafoetida: a review. J. Tradit. Complement. Med. 7 (3), 347–359. doi:10.1016/j. jtcme.2016.11.004.
- 2. Anshahy, M., and Iranshahi, M. (2011). Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assafoetida oleo-gum-resin)—a review. J. Ethnopharmacol. 134 (1), 1–10. 2010.11.067.
- 3. Ahmadi, K. S., Hadjiakhoondi, A., Delnavazi, M. R., Tofighi, Z., Ajani, Y., and Kiashi, F. (2020). Chemical composition and biological activity of

- Ferula aucheri essential oil. Res. J. Pharmacogn. 7 (2), 21–31. doi:10.22127/RJP. 2020.210354.1537.
- 4. Sahebkar, A., & Iranshahi, M. (2011). Volatile Constituents of the Genus *Ferula* (*Apiaceae*): A Review. Journal of Essential Oil Bearing Plants, 14(5), 504–531. doi:10.1080/0972060X.2011.10643969
- 5. Amirhossein Sahebkar, Mehrdad Iransha. Biological activities of essential oils from the genusFerula (Apiaceae). Asian Biomedicine Vol. 4 No. 6 December 2010; 835-847
- Mirjalol Ziyadullaev, Rikhsiboy Karimov, Asqar Abdurazakhov, Sobirdjan Sasmakov, Jaloliddin Abdurakhmanov, Farkhod Eshboev & Shakhnoz Azimova Synthesis of 6-Substituted 3(H)-Quinazolin-4-Ones and Their Antimicrobial Activity. Pharm Chem J (2023). https://doi.org/10.1007/s11094-023-02892-3
- 7. Farukh S. Sharopov, Payrav D. Khalifaev, Prabodh Satyal, Yanfang Sun, Abduahad Safomuddin, Safol Musozoda ,Michael Wink and William N. Setzer. The Chemical Composition and Biological Activity of the Essential Oil from the Underground Parts of Ferula tadshikorum (Apiaceae). Rec. Nat. Prod. 13:1 (2019) 18-23
- 8. Sharopov, F., Satyal, P. & Wink, M. Composition of the Essential Oil of Polychrysum tadshikorum. Chem Nat Compd 52, 523–524 (2016). https://doi.org/10.1007/s10600-016-1697-1